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Introduction

• Radiation damage to electronic components 

presents a high risk for space missions. 

• The energetic particles can cause damage  to 

components, compromising their functionality. 

• Missions flying in high radiation environments 

require substantial shielding to reduce the 

radiation to a tolerable level.

• Harsh radiation environment at Jupiter – Europa is 

located in the heart of the trapped particles
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Electron Environment around Jupiter

• Europa orbit ~9.5 Rj
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Juno Spacecraft – Radiation Vault

– About 1 cm thick titanium (1 m x 1 m size)

– Mass of ~18 kg each panel (whole vault ~200 kg)
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Example previous mission with radiation vault

Artist’s concept



Science Description

Europa Lander Mission Concept

• To place a robotic prove on the surface of Europa

• Science Goals 

– Search for evidence of life in Europa

– Assess the current habitability of Europa using in-situ techniques

– Characterize surface and subsurface properties. 
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Artist’s concept



Mission design and engineering

Europa Lander Mission Concept
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• Possible SLS launch ~2024 – 5 year cruise 

to Jupiter Orbit Insertion (JOI)

• 42.5 kg scientific instrument payload 

allocation

• Baseline surface lifetime of 20+ days

• Expected TID to 150 krad (Si). All 

electronics within the vault must be rated 

to 300 krad (radiation design factor of 

two,RDF = 2). 

Artist’s concept



Cruise and stages of the mission profile

Europa Lander Mission Concept
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Artist’s concept



Post Jupiter Insertion

Mission Concept segments studied 

• The dose to a given piece of hardware is determined by 

summing the doses it sees during each mission segment 

in the hardware configuration in which it resides during 

that mission segment.
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Deorbit Vehicle (DOV)

(aka, the Lander Stack)

Lander

On the surface 

(modeled it on an ice sheet)Dose for 48 hrs prior to landing

Cruise Vehicle at Jupiter, 

post-JOI (CVJ)

Dose from JOI to DOV 

separation.

Artist’s concept



Using JPL model – GIRE2p

Radiation Environments for each segment
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NOVICE Transport Code

Models imported to Radiation analysis tool
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Deorbit Vehicle (DOV)

(aka, the Lander Stack)

Lander

Cruise Vehicle at Jupiter, 

post-JOI (CVJ)

On the surface 

(modeled it with an ice sheet on “top”)



methodology

Total Ionizing dose (TID) simulations

• Detector points were located inside the vault’s 

electronic boxes. (8 corners and 1 center point)

• Bottom and side panels were modified (by mass 

equivalent method)

• Top panel unchanged, the thickness is not 

uniform. 

05/15/2017 Pre-Decisional Information - For Planning and Discussion Purposes Only 11



3D view of the “detector points” inside 

electronic boxes

05/15/2017 Pre-Decisional Information - For Planning and Discussion Purposes Only 12

Top view of  “iso-dose contours”



For the 20 worst points and for the radio inside the vault

TID Summary table 
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Location Name Dose: 10 mm

(rad, Si)

Dose: 9.5 mm

(rad, Si)

Dose: 9 mm

(rad, Si)

Dose: 8.5 mm

(rad, Si)

Dose: 8 mm

(rad, Si)

GAN SSPA1 C 1.39E+05 1.418E+05 1.53E+05 1.64E+05 1.78E+05

GAN SSPA1 C 1.31E+05 1.403E+05 1.49E+05 1.59E+05 1.75E+05

SAMPLECAM C 1.31E+05 1.399E+05 1.53E+05 1.58E+05 1.77E+05

SAMPLECAM CT 1.30E+05 1.383E+05 1.48E+05 1.58E+05 1.74E+05

COMPUTE1 C 1.29E+05 1.346E+05 1.45E+05 1.64E+05 1.72E+05

SAMPLECAM C 1.27E+05 1.345E+05 1.45E+05 1.58E+05 1.72E+05

SAMPLECAM C 1.25E+05 1.325E+05 1.40E+05 1.53E+05 1.65E+05

MTR CTRL C 1.25E+05 1.291E+05 1.33E+05 1.42E+05 1.54E+05

PYROPWR C 1.24E+05 1.299E+05 1.42E+05 1.50E+05 1.63E+05

COMPUTE1 C 1.22E+05 1.265E+05 1.31E+05 1.43E+05 1.50E+05

SAMPLECAM C 1.19E+05 1.255E+05 1.35E+05 1.47E+05 1.59E+05

RAMAN C 1.19E+05 1.272E+05 1.33E+05 1.42E+05 1.56E+05

RAMAN C 1.18E+05 1.226E+05 1.32E+05 1.43E+05 1.52E+05

PLD GCMS C 1.18E+05 1.229E+05 1.35E+05 1.45E+05 1.57E+05

RAMAN C 1.17E+05 1.226E+05 1.30E+05 1.41E+05 1.60E+05

GAN SSPA1 C 1.17E+05 1.238E+05 1.29E+05 1.38E+05 1.52E+05

MTR CTRL CTR 1.16E+05 1.260E+05 1.32E+05 1.38E+05 1.50E+05

SAMPLECAM C 1.15E+05 1.251E+05 1.36E+05 1.41E+05 1.53E+05

GEOPHONE C 1.15E+05 1.254E+05 1.36E+05 1.42E+05 1.56E+05

COMPUTE1 CTR 1.15E+05 1.219E+05 1.28E+05 1.37E+05 1.44E+05

FRADIO2 C 4.31E+04 4.322E+04 4.53E+04 4.96E+04 5.09E+04



Summary of worst points TID
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Conclusions and Future work

• Dose estimates presented suggest that a wall thickness of 

~8.5 mm is sufficient. 

• Mass reduction of ~8 kg from the baseline mass estimate with 

10 mm thick walls. 
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Wall Thickness
(mm)

Vault Walls Mass
(kg)

# Boxes exceeding 

150 krad

10.00 72.71 0

9.50 70.09 0

9.00 67.46 2

8.50 64.83 3

8.00 62.21 7

• Additional re-configuration is 

under process. Future shielding 

analyses are needed

• Spot shielding or modification 

can be made to specific 

electronic boxes if needed  
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